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ABSTRACT
Root cause analysis is a common data analysis task. While question-
answering systems enable people to easily articulate a why question
(e.g., why students in Massachusetts have high ACT Math scores
on average) and obtain an answer, these systems often produce
questionable causal claims. To investigate how such claims might
mislead users, we conducted two crowdsourced experiments to
study the impact of showing different information on user percep-
tions of a question-answering system. We found that in a system
that occasionally provided unreasonable responses, showing a scat-
terplot increased the plausibility of unreasonable causal claims.
Also, simply warning participants that correlation is not causation
seemed to lead participants to accept reasonable causal claims more
cautiously. We observed a strong tendency among participants to
associate correlation with causation. Yet, the warning appeared to
reduce the tendency. Grounded in the findings, we propose ways
to reduce the illusion of causality when using question-answering
systems.
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1 INTRODUCTION
Root cause analysis is a common task during data analysis. Such
analysis provides explanations for events in business processes,
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observations about human behaviours, and phenomena in society.
A business analyst, for instance, may seek explanations for a rev-
enue decrease to identify supply chain bottlenecks and marketing
strategies [1]. To help people acquire this important skill, colleges
and online learning platforms have offered courses on root cause
analysis [11, 15].

The need for root cause analysis skills is not only limited to
professional analysts. Open data create opportunities for anyone to
engage in personal data projects. Visualization hobbyists, for exam-
ple, may conduct data analysis on public data and create fascinating
visualizations on platforms such as Makeover Monday [50]. Indi-
vidual citizens might analyze data about the social issues they are
concerned about and write a blog post about the analysis [40, 46].
However, root cause analysis could be challenging to these people
since they might lack domain knowledge and analysis skills.

Systems with question-answering functionality present a re-
source that people can utilize to explain data observations even
without significant expertise in data analysis. Users of these sys-
tems can easily articulate their why questions through natural
language [16] or point and click [64]. The systems then employ
advanced statistical analysis to infer answers. Some technologists
believe that question-answering interfaces will become the norm
in analytics platforms [21].

However, causal inference from observational data (as opposed
to randomized experiments) is challenging [55]. These question-
answering systems often produce unintuitive answers to a user’s
why questions. Figure 1 shows Explain Data, a question-answering
functionality in Tableau [64]. The user observes that Massachusetts
has the highest average ACT Math score among all US states. Being
curious, she asks Explain Data to provide explanations for the high
score. Explain Data infers that the rate of teenage pregnancy is
negatively correlated with ACT Math score and that the low rate
of teenage pregnancy in Massachusetts may lead to the high ACT
Math score. The veracity of the explanation is questionable.

When these systems do not always provide reliable results, a
concern is their potential power to persuade people into believing
causal claims (e.g., low teenage pregnancy rate in Massachusetts
may lead to the high average ACT Math score) that may not be
true. Does visualizing correlation (e.g., using a scatterplot) increase
the plausibility of a causal claim and user trust in the system even
when the claim does not make sense? Does warning users about
the potential flaws in the system help them adopt the answers
more cautiously? Answering these questions could help understand
designs that ensure judicious use of the computational outputs.

https://doi.org/10.1145/3411764.3445444
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Figure 1: An answer generated by Tableau Explain Data [64].
The user asks about the high ACT Math score in Mas-
sachusetts. Explain Data infers that teenage pregnancy rate
and ACT Math score are negatively correlated and the low
teenage pregnancy rate in Massachusetts might cause the
highACTMath score. It shows the data using a scatterplot in
which each dot is a state and the blue dot is Massachusetts.

This paper investigates the impacts of different information (a
scatterplot, a description about correlation, and a warning message)
shown alongside a causal claim on the perceptions of a question-
answering system. We conducted two crowdsourced studies with
200 participants each. In both studies, participants reviewed a se-
ries of answers to why questions. These answers were presented
with different designs. Across different designs, we compared the
perceived plausibility of the causal claims, user trust in the question-
answering system, the awareness of the system’s flaws, and users’
tendency to associate correlation with causation. Whereas the first
study presented answers with different degrees of plausibility, the
second study presented only reasonable answers.

From the first study, we found that participants tended to dis-
agree less with an unreasonable causal claimwhen a scatterplot was
presented alongside the claim. In contrast, participants appeared to
accept a reasonable causal claim more cautiously when they were
shown a simple warning about the system’s potential confusion of
correlation and causation. We further observed a general tendency
among participants to associate correlation with causation, but
the warning seemed to reduce the tendency. We did not observe
these effects in the second study where the system only provided
reasonable causal claims.

Question-answering systems often employ data visualizations to
provide context for their answers [25, 26]. Our results reveal that
these systems could leverage the persuasive power of visualizations
to create an illusion of causality: Although scatterplots only provide

evidence about correlation, presenting scatterplots next to a causal
claim could increase users’ tendency to agree with the claim. Based
on our findings, we suggest that users should be skeptical when
considering answers that are automatically generated and propose
design ideas to encourage skepticism.

2 RELATEDWORK
Our work intends to understand how the visual design of answers
to why questions might influence the perceptions of a question-
answering system. We draw on research relating to the impact
of visualization design on data interpretation as well as question-
answering systems more broadly.

2.1 Impact of Visualization Design on Data
Interpretation

Visualization design holds significant power to shape data interpre-
tation [51]. Researchers have investigated a wide range of factors
such as knowledge, perceptual biases, and cognitive biases that
influence the messages communicated to viewers.

Knowledge external to visualizations often affects how we in-
terpret the visualizations. As users look at a visualization, they
often apply their domain knowledge [56]. Xiong et al. [69] showed
that this prior knowledge could prime a viewer to obtain a partic-
ular message from a visualization and lead the viewer to believe
that other viewers would receive the same message. Besides prior
knowledge, social information also affects data interpretation. Kim
et al. [32] found that seeing others’ expectations about the data
influenced people’s trust in the accuracy of the data.

Moreover, perceptual biases play a role in manipulating data
interpretation [14, 52]. For example, distorting the aspect ratio of
a line chart can lead to an inaccurate assessment of trends in the
data [27]; truncating the y-axis in a bar chart exaggerates effect
sizes [13]; the neighborhood of a bar in a bar chart can change the
perceptions of the bar’s height [71]. However, these biases could be
mitigated through judicious design. For instance, Ritchie et al. [54]
showed that an animated transition from an untruncated bar chart
to a truncated one could avoid misinterpretation.

Cognitive biases can further change the lens through which we
interpret visualizations [18]. An example is priming and anchoring
effects. Calero Valdez et al. [65] conducted experiments to show that
the judgment of class separability in scatterplots depended on the
scatterplots users saw before. Biases in data interpretation can also
have consequences on decision making. Dimara et al. [17] provided
evidence that the presence of dominated data points in a scatterplot
influenced the judgement of which points were dominating.

Besides knowledge and biases, subtle design choices also matter
to data interpretation: Titles can have a misleading impact on visu-
alization interpretation [6, 31, 35, 36]; visual embellishments can
affect the insights we gain from visualizations [7, 49].

While correlation does not imply causation, it is easy to confuse
them, leading to an illusion of causality [47]. Xiong et al.’s [68]
found that this illusion would increase with the aggregation level of
data visualizations. Instead of studying data aggregation, we inves-
tigated the effects of different information on perceived causality
when using question-answering systems. Specifically, we studied
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whether two forms of correlational evidence (scatterplot and tex-
tual description about correlation) could create causal illusion and
whether a simple warning could reduce the illusion.

2.2 Question-Answering Systems and User
Perception

Technologists have developed question-answering systems to meet
users’ information needs in various domains including sports [72],
work settings [44], and data science [20]. These systems exhibit
a wide variety of designs. Some (e.g., conversational agents or
chatbots) mimic natural human conversations and can understand
a rich diversity of topics [3]. Others resemble web search and focus
only on a small set of tasks [37, 38].

In data visualization, researchers have developed natural lan-
guage interfaces to facilitate visual data analysis [58, 61, 70]. Many
of these systems aim to address specific usability challenges as users
employ natural language for data analysis. For example, users’ ut-
terances are often ambiguous. Datatone utilizes ambiguity widgets
to expose the ambiguity and let users correct the system’s deci-
sions [24]. Moreover, conversations happen in some context on
which utterance semantics depend [30]. To address this, Evizeon
provides pragmatics support to retain contextual information and
infer a user’s meaning based on the context [30].

Another line of research focuses on understanding the impact of
system behaviors and information presentation on the perceptions
of these systems. Liao et al. [43] investigated how agent sociability
influences user interactions with conversational agents. Ashktorab
et al. [4] studied preferences for different strategies to handle con-
versational breakdowns. Hearst et al. [25, 26] investigated the visual
designs of answers provided by a natural language interface and
how users perceive these designs. In a similar vein, we intend to
provide insights into how the visual design of answers to why ques-
tions might affect user perceptions of a question-answer system.

3 PRE-STUDY: COLLECTING CAUSAL
STATEMENTS

As a starting point to understand the appropriate presentation
of answers to why questions, we focus on why questions about
extremum (i.e., an extreme value). An example is why students
in Massachusetts have high ACT Math scores on average (Fig. 1).
Finding extremum is a common task during data analysis [2]. Also,
functionality to answer such questions has emerged in commercial
systems such as Tableau [64]. Findings from our studies could offer
design guidelines in practice.

In study 1, we showed participants a series of answers to why
questions. We created answers with different visual designs and as-
sessed user perceptions of the system given the designs. Due to the
inherent challenges in causal inference [55], question-answering
systems occasionally provide unreasonable answers to why ques-
tions. To emulate these systems, we selected causal claims with
different levels of plausibility as answers presented to participants.
To select these causal claims, we conducted a pre-study.

3.1 Methods
3.1.1 Datasets. We planned to generate causal claims that were
backed up by observational data and considered using synthetic

Figure 2: Interface used in the pre-study.

data. However, our goal was to study user perceptions of a system,
and the credibility of the data might affect user perceptions. To
control for the potential experimental confounds, we used real-
world data instead.

We first curated a dataset about states in the US from sources
including US Census Bureau [8], National Center for Education
Statistics [22], and Kaiser Family Foundation [23]. The curated
dataset has 258 attributes about demographics, healthcare, and
education for each US state. We chose these topics because they
are accessible to laypeople. This enabled participants to judge the
plausibility of the generated causal claims based on common sense.

With the curated data table, we computed the Pearson correlation
for all attribute pairs. To find attribute pairs with a potential causal
relationship, we collected the ones with a high correlation (above
0.7 or below -0.7). For each of the 1522 attribute pairs with a high
correlation (e.g., employment rate and poverty rate), we found a
state (e.g., Mississippi) that has an extreme value for both attributes
and omitted the attribute pairs where such a state did not exist.

Based on the collected attribute pairs and states, we generated
causal claims (e.g., low employment rate in Mississippi may be
a factor that leads to the high poverty rate in Mississippi). The
plausibility of this claim can be affected by the plausibility of the
causal relationship (e.g., employment rate affects poverty rate) and
that of the information about the state (e.g., Mississippi has a high
poverty rate). Since we intended to assess the plausibility of the
causal relationship, we removed the states from the causal claims
(see Fig. 2).

An author carefully picked 30 reasonable claims, 30 unreasonable
claims and 30 claims that were hard to tell if they were reasonable
(hereafter, hard-to-tell claims). We verified and ranked the plausi-
bility of these claims through a study on Amazon Mechanical Turk
(MTurk).

3.1.2 Participants. We randomly segmented the 90 claims into five
batches of 18 claims and recruited 20 workers on MTurk to rate
each batch (100 unique workers in total). We limited the tasks to
workers in the United States and had an acceptance rate of 95% or
above. During data analysis, we omitted participants who failed
to pass attention checks (but compensated them for participation).
We recruited participants until reaching the target sample size for
each batch. Participants were compensated $1 for the study that
took approximately 5-10 minutes.

Among the 100 participants, 55 were male, and 45 were female.
They aged 22-64 (M=35.5, SD=11.2). Participants reported their
educational attainment to be high school (8 participants), profes-
sional school (18), college (49), graduate school (17), PhD (7), and
postdoctoral (1).
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Figure 3: The top three reasonable, unreasonable, and hard-to-tell causal claims. Each row shows a causal claim (right) and a
bar chart that visualizes the votes (left). The green, red, and gray bars represent the votes for Reasonable, Unreasonable, and
Not Sure respectively. For example, the most reasonable claimwas “a low employment rate may be a factor that leads to a high
poverty rate.” It got 20/20 votes for Reasonable (R), 0/20 vote for Unreasonable (U), and 0/20 vote for Not Sure (N).

3.1.3 Procedure. Each participant was randomly assigned to rate
one of the five batches of 18 claims. Participants first filled out a
demographic survey on their gender, age, and highest education
level. They then saw a series of 18 causal claims that were presented
on separate pages (Fig. 2). We randomized the presentation order
of these claims to prevent order effects. Based on the plausibility of
each claim, participants selected one of the three options: Reason-
able, Unreasonable, and Not Sure. As each participant rated more
than a dozen causal claims, we used the three options rather than
a Likert scale with five options or more to keep the study short.
During the study, participants also answered two attention check
questions asking them to directly select one of the three options.

3.2 Results
For each causal claim, we computed the probabilities that partic-
ipants selected Reasonable, Unreasonable, and Not Sure. We then
calculated the entropy for each claim. A low entropy implies that
participants mostly voted for the same option, whereas a high en-
tropy means that participants’ votes tended to distribute across
the three options. Within each bucket of the 30 reasonable claims,
30 unreasonable claims, and 30 hard-to-tell claims, we ranked the
claims by entropy.

For the 30 reasonable claims, we ranked them in increasing order
of entropy. The top claims had a low entropy because participants
mostly voted for Reasonable. For the 30 unreasonable claims, we
again ranked them in increasing order of entropy. Participants
mostly selected Unreasonable for the top claims. For the 30 hard-
to-tell claims, we expected that the claims where the plausibility
was the most difficult to judge had a high entropy score. This is

because participants likely struggled to choose among the options.
We sorted these claims in decreasing order of entropy.

Figure 3 shows the top three reasonable, unreasonable, and hard-
to-tell claims based on the above ranking. We provide a ranked list
of all the 90 claims as a supplementary material. Study 1 confirmed
the validity of our results: In study 1, when participants rated the
claims on a 7-point Likert scale, they tended to agree with the top
reasonable claims, disagree with the top unreasonable claims, and
be neutral about the top hard-to-tell claims.

4 STUDY 1: PROVIDING ANSWERS WITH
DIFFERENT PLAUSIBILITY

With the ranked lists of reasonable, unreasonable, and hard-to-tell
claims, we designed a between-subject experiment during which
participants reviewed a series of answers to why questions.

When designing the presentation of answers, we considered its
complexity to typical end users. One way to answer why questions
(e.g., why Mississippi has a high poverty rate) is causal graph [55,
66], a technique often employed in statistics literature for visual-
izing complex causal relationships. However, causal graphs may
require more advanced statistics training to understand.

We also considered showing multiple factors in the answer but
were concerned about introducing experimental confounds. For
example, the number, the perceived plausibility, and the underlying
causal relationship of the factors could potentially alter the percep-
tion of system performance. Yet, using real-world data implied that
these variables could be difficult to control for.

We therefore adopted a simplified design where the system re-
sponded to a why question by stating a factor that could answer
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A why question
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Claim only

Claim + vis

Claim + vis +description

Claim + vis + description + warning

Figure 4: The four experimental conditions. A user asks about the high poverty rate in Mississippi (a). The system answers
only a causal claim (b), shows a scatterplot next to the claim (c), adds a description about the correlation (d), and warns about
the system’s flaws besides showing the previous information (e).

the question. In each task, participants saw a why question (e.g.,
why Mississippi has a high poverty rate) and the system’s answer
(e.g., low employment rate in Mississippi may be a factor that leads
to the high poverty rate). Across conditions, the answers had differ-
ent designs (Fig. 4b-d). We provide screenshots of the experiment
interface as a supplementary material.

4.1 Methods
4.1.1 Conditions. Building on prevailing system designs and the
research literature, we focused on two types of correlational ev-
idence (scatterplot and textual description about correlation) to
investigate whether they created an illusion of causality. We fur-
ther studied the effectiveness of warning in reducing the illusion.
Here, we describe these three types of information:

Scatterplot. Scatterplots are common for showing the relationship
between two numerical variables [57]. They have also been applied
in question-answering functionality in commercial systems for
showing the relationship between cause and effect (Fig. 1).
Textual description about correlation. While the causal claim
(e.g., low employment rate in Mississippi may be a factor that
leads to the high poverty rate) describes a single state in the US, a
description about correlation (e.g., as employment rate decreases,
poverty rate tends to increase) depicts the overall trends for all
the states. To facilitate interpretation, visualization systems often
provide such descriptions next to a chart [39, 60].
Warning message. Although scatterplots and the textual descrip-
tions only reveal correlation, theymight induce an illusion of causal-
ity [68]. A mitigation strategy is to use a message to warn users that
correlation is not causation. While such warnings are less common
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Assess tendency to associate 
correlation with causation

Measure plausibility 
of causal claims

Assess awareness of 
reasoning �aws in system

Measure user trust 
in system

Collect demographic 
information

1

2

3

4

5
Figure 5: The five stages in study 1 and study 2.

in visualization systems, they are commonly used in other systems
(e.g., web browser) to prompt safety-related behaviors (e.g., not to
click on phishing websites) [19]. It would be interesting to learn
about if a simple statement is enough to raise awareness of the
system’s potential flaws and reduce users’ tendency to confuse
correlation and causation.

Based on these three information types, we designed four answer
interfaces by adding the information types one by one. Participants
were randomly assigned to a condition where the answers adopted
one of the four designs:
Claim only (Fig. 4b). The system only shows a claim about cause
and effect as an answer to a why question.
Claim + vis (Fig. 4c). Beside the causal claim, the system visualizes
the cause and effect using a scatterplot. Prior studies showed that
the aspect ratio of point clouds in a scatterplot affects correlation
estimation [10, 48]. To support a consistent correlation estimation,
we controlled the aspect ratio. For each axis, we set the lowest value
to be (min value of the data − 0.15 × range of the data) and the
highest value to be (max + 0.15 × range).
Claim + vis + description (Fig. 4d). The system additionally states
the correlation between the cause and effect variables with a textual
description.
Claim + vis + description + warning (Fig. 4e). To encourage
users to evaluate the answers carefully, the system warns that
the scatterplot only shows correlation, and that correlation is not
causation.

4.1.2 Participants. A power analysis indicated that for a signifi-
cance level of 0.05 and a power of 0.8, detecting a medium effect
size of 𝑓 = 0.25 using one-way ANOVA required 180 participants
(45 participants per condition). As we planned to conduct non-
parametric tests (see Sec. 4.1.4), we targeted a slightly larger sample
size (200 participants in total or 50 participants per condition) fol-
lowing guidelines on sample size determination for non-parametric
tests [41].

During participant recruitment, we limited the study to workers
in the United States, had an acceptance rate of 95% or above, and
did not participate in the pre-study. The study took approximately
10-20 minutes, and we compensated participants $2.90. At the end,
we recruited 200 unique workers on MTurk.

The survey had two interpretation checks for assessing scat-
terplot comprehension and three open-ended questions (details in
the Procedure section). We excluded participants who did not pass
any of the interpretation checks or provided gibberish answers for

any of the open-ended questions (but compensated them for par-
ticipation). Overall, the data quality was poor. For example, many
participants provided canned responses for some open-ended ques-
tions. We omitted 123 participants and continued recruiting until
reaching the target sample size.

Participants aged 20-69 (M=35.4, SD=10.1). 131 were male, 68
were female, and 1 preferred not to say. They reported different
educational attainments: high school (29 participants), professional
school (22), college (109), graduate school (35), PhD (1), and post-
doctoral (4). Concerning data analysis expertise, 44 had none, 64
were beginners, 71 were intermediate, and 21 were advanced. For
experience with visualization platforms (e.g., Tableau), 82 had none,
60 were beginners, 36 were intermediate, and 22 were advanced.
When asked about the frequency of using question-answering sys-
tems, 132 reported never, 30 reported rarely, 23 reported weekly,
and 15 reported daily.

4.1.3 Procedure. We first randomly assigned participants to one
of the four conditions. For all conditions, the study consisted of five
main stages (Fig. 5).

In stage 1 (Fig. 5 1 ), participants filled out a demographic survey.
After filling out the survey, they completed a practice task to get
acquainted with the study interface.

In stage 2 (Fig. 5 2 ), participants reviewed a series of nine an-
swers to why questions. In each task, they examined a data obser-
vation (e.g., Mississippi has the highest poverty rate among all US
states) (Fig. 4a), a why question (e.g., why is poverty rate in Missis-
sippi so high?) (Fig. 4a), and the system’s answer to the question
(Fig. 4b-d). Depending on the condition, participants saw a differ-
ent visual design for the answers. Based on the system’s answer,
participants rated their agreement with a causal claim (e.g., low
employment rate in Mississippi is a factor that leads to high poverty
rate in Mississippi) on a 7-point Likert scale.

We constructed the nine answers using the top nine causal claims
obtained from the pre-study (Fig. 3). Hence, three answers were
reasonable, three were unreasonable, and three had plausibility that
was difficult to judge. This intended to mirror real-world systems
that tend to be unreliable in answering why questions. The order
of the answers was randomized to prevent order effects.

After participants reviewed the nine answers, we measured user
trust in the system in stage 3 (Fig. 5 3 ). Participants rated their
trust in the system on a 7-point scale from -3 (I don’t trust it at all)
to +3 (I fully trust it). They further shared their reasons for trusting
or not trusting the system.

Next, we assessed their awareness of the reasoning flaws in the
system in stage 4 (Fig. 5 4 ). Participants reported whether they
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ca
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Figure 6: Measuring tendency to associate correlation with causation. Participants saw a data observation and a scatterplot (a),
answered interpretation check questions (b), and rated their agreement on a statement suggesting that the scatterplot implied
causation (c).

observed any reasoning flaws in the system. If the answer was “yes,”
we asked them to specify the reasoning flaw(s) they found.

In the final stage (Fig. 5 5 ), we assessed their tendency to as-
sociate correlation with causation. Participants in stage 5 saw a
description of a data observation (Mississippi has the second high-
est child mortality among all US states) and a scatterplot showing
a strong correlation between child mortality and an unknown vari-
able X (Fig. 6a). To assess participants’ understanding of scatterplots,
we first asked participants to answer two interpretation check ques-
tions (Fig. 6b). Participants who failed to pass any of the questions
were excluded from the data analysis.

Whereas participants rated their agreement with a causal re-
lationship in stage 1, participants rated their agreement with a
sentence stating that a scatterplot with a high correlation implied
a causal relationship in stage 5. Participants saw a statement: “The
scatterplot implies that the high value of Variable X is a factor that
leads to the high child mortality in Mississippi” (Fig. 6c). They rated
the statement on a 7-point Likert scale and explained why they
agreed or disagreed.

4.1.4 Quantitative Measures. We derived six measures from par-
ticipants’ response.
Agreement (reasonable). For each participant, we computed the
average agreement rating for the three reasonable answers.
Agreement (unreasonable). It is the average rating for the three
unreasonable answers.
Agreement (hard to tell). It is the average rating for the three
answers that were hard to tell if they were reasonable.
Trust. Some researchers have developed questionnaires to assess
user trust in recommender systems [53] and machine learning
systems [9]. Since these questionnaires may not be applicable to
question-answering systems, we tailored a question to assess trust
in question-answering systems. In the post-study survey, we asked,

“Overall, howmuch do you trust or not trust the question-answering
system?” and participants rated on a scale from -3 to +3.
Awareness of system’s flaws. We computed the number of par-
ticipants who selected “yes” for the question, “Did you observe any
flaw(s) in the reasoning of the question-answering system?” Unlike
the other measures that are scales between -3 and +3, this measure
is a count between zero and 50. Whereas trust and agreement with
answers are more subjective, observations about reasoning flaws
in the system are more clear-cut, making a yes/no question more
suitable.
Awareness of “correlation is not causation”. In the last part,
participants rated a statement: “The scatterplot implies that the high
value of Variable X is a factor that leads to the high child mortality
in Mississippi.” (Fig. 6c) If participants were cautious about drawing
causal conclusions from correlation, they should be inclined to
disagree with the statement.

During a pilot study, we observed that when the variable name
was shown, participants tended to use their common sense to decide
if they agreed with the statement. Yet, we wanted to assess tendency
to confuse correlation and causation instead of ability to apply
common sense. To reduce the impact of common sense in answering
the question, we hid the variable name of X.

Likert-scale data are not continuous and violate the ANOVA
assumptions. To study the main effect of answer design, we used
a Kruskal-Wallis test, which is a non-parametric equivalence of
one-way ANOVA, for the five measures using a 7-point scale (i.e.,
all measures except awareness of system’s flaws). When there is a
significant main effect, we conducted post-hoc Wilcoxon rank sum
tests with a Holm-Bonferroni correction for pairwise comparisons.

For the awareness of system’s flaws, we used a Fisher’s exact
test to assess if the number of participants who found reasoning
flaws in the system was significantly different across conditions.



CHI ’21, May 8–13, 2021, Yokohama, Japan Law, Lo, Endert, Stasko, andQu

Agreement (reasonable)

-3 +30

Agreement (unreasonable)

-3 +30

Agreement (hard to tell)

-3 +30

Trust

-3 +30

Awareness (corr ≠ causation)

-3 +30

Awareness (system’s �aws)

0 50

28

25

25

19

Claim only
Claim + vis
Claim + vis + description
Claim + vis + description + warning

Agree with reasonable claims

Participants who observed reasoning �aws

Agree with unreasonable claims Agree with hard-to-tell claims

Trust the question-answering system Agree that a scatterplot implies causation

Figure 7: Quantitative results from study 1. All error bars show 95% bootstrapped confidence intervals.

4.1.5 Qualitative Response. There were three open-ended ques-
tions in the survey, one for explaining trust or distrust, one for
specifying reasoning flaws in the system, and one for explaining
why agreed or disagreed that the scatterplot implied causation.

For each question, an author open-coded the responses to iden-
tify the emergent categories and develop a codebook. We observed
that a response could include multiple categories. Hence, we treated
each category as binary: For each response, we labelled whether
each category was present or absent. Two coders independently
coded all responses. We then discussed inconsistencies, refined
code definitions, and independently re-coded the responses based
on the new definitions. We iteratively coded the responses until we
reached a Cohen’s 𝜅 above 0.7 for all the categories.

For each category, we conducted a Fisher’s exact test to de-
termine whether its presence was significantly different across
conditions.

4.1.6 Hypotheses. We developed hypotheses based on research in
visualization’s persuasive power, trust in automated systems, and
warning science.

Pandey et al. [51] found that when participants did not have a
strong attitude towards a topic, visualizations had a strong power
to change their attitudes. They also commented on the difficulty
to change attitudes for topics of which participants already had a
strong prior opinion [51]. We expected that showing a scatterplot
would increase the plausibility of hard-to-tell claims because par-
ticipants likely did not have a strong attitude towards them. We
also expected that the scatterplot would not affect the plausibility
of reasonable and unreasonable claims.
H1.1: Participants’ agreement with the reasonable claims does not
differ across conditions.
H1.2: Participants’ agreement with the unreasonable claims does
not differ across conditions.
H1.3: Participants in the three conditions that show a scatterplot
in the answers (i.e., claim + vis, claim + vis + description, and claim
+ vis + description + warning) agree with the hard-to-tell claims
more than participants in the claim-only condition.

Transparency in automated systems can inspire user trust [59].
For example, when a recommender system provides reasons behind
its recommendations, users tend to trust the system more [29].
Showing the data can increase the transparency in the question-
answering system. We posited that users would trust the system
more when it showed the scatterplot.
H1.4: Participants in the three conditions that show a scatterplot
in the answers trust the question-answering system more than
participants in the claim-only condition.

Some researchers in warning science have compared the ef-
fectiveness of passive and active warnings [19]. Whereas active
warning forces users to notice it by blocking user tasks, passive
warning (e.g., a simple warning message) is less interrupting [19].
In data analysis, passive warning is more suitable because a small
latency in interaction can hamper analysis quality [45]. However,
Egelman et al. [19] showed that passive warnings were often inef-
fective because users might ignore them. The ineffectiveness might
extend to question-answering systems. Hence, we posited that the
warning message would not increase participants’ awareness of the
system’s flaws nor decrease their tendency to associate correlation
with causation.
H1.5: Participants’ awareness of the system’s flaws does not differ
across conditions.
H1.6: Participants’ awareness of “correlation is not causation” does
not differ across conditions.

4.2 Results
Figure 7 summarizes the results for the quantitative measures. We
observed that the scatterplot increased the plausibility of unreason-
able and hard-to-tell claims but not reasonable claims. The warning
message appeared to decrease the plausibility of reasonable claims
but not unreasonable and hard-to-tell claims. Trust and awareness
of flaws did not seem to differ across conditions. However, the
warning message seemed to increase the awareness of “correlation
is not causation.”

Also, for the claim-only condition, participants tended to give a
neutral rating for the hard-to-tell claims (M=0.04), a positive rating
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for the reasonable claims (M=1.95), and a negative rating for the
unreasonable claims (M=-1.44). This confirmed the validity of the
pre-study results.

In the following, we provide the detailed analysis.

4.2.1 Agreement (reasonable). On a scale from -3 (strongly dis-
agree) to +3 (strongly agree), participants in the claim + vis + de-
scription condition rated the reasonable claims the highest (M=2.13,
SD=0.92), followed by those in the claim + vis condition (M=2.04,
SD=0.98), the claim-only condition (M=1.95, SD=0.96), and the
claim + vis + description + warning condition (M=1.65, SD=0.89).
A Kruskal-Wallis test indicated a significant main effect of answer
design on the rating (𝜒2 (3)=10.8, p=.013). We conducted six post-
hoc pairwise comparisons using Wilcoxon rank sum tests with
a Holm-Bonferroni correction. Results showed that only the dif-
ference between claim + vis + description + warning and claim
+ vis + description (p=.017) as well as that between claim + vis +
description + warning and claim + vis (p=.044) were significant.
The results did not support H1.1.

4.2.2 Agreement (unreasonable). Participants in the claim + vis +
description condition rated the unreasonable claims the highest
(M=-0.26, SD=1.92), followed by those in the claim + vis condi-
tion (M=-0.47, SD=1.96), the claim + vis + description + warning
condition (M=-0.55, SD=1.82), and finally the claim-only condition
(M=-1.44, SD=1.74). A Kruskal-Wallis test indicated a significant
main effect of answer design on the rating (𝜒2 (3)=12.2, p=.007),
with post-hoc pairwise comparisons showing that all the three con-
ditions with scatterplots in the answers had a significantly higher
average rating than the claim-only condition. The results did not
support H1.2.

4.2.3 Agreement (hard to tell). Participants in the claim + vis + de-
scription condition rated the hard-to-tell claims the highest (M=1.2,
SD=1.12), followed by those in the claim + vis condition (M=0.87,
SD=1.34), the claim + vis + description +warning condition (M=0.62,
SD=1.25), and the claim-only condition (M=0.04, SD=1.05). There is
a significant main effect of answer design on the rating (𝜒2 (3)=24.4,
p<.001). Pairwise comparisons showed that all the three conditions
with scatterplots in the answers had a significantly higher aver-
age rating than the claim-only condition. Other pairs were not
significantly different. The findings supported H1.3.

4.2.4 Trust. On average, the trust ratings across conditions were
positive, indicating a tendency to trust the system. Claim + vis +
description + warning has the highest rating (M=0.98, SD=1.31),
followed by claim + vis + description (M=0.9, SD=1.76), claim + vis
(M=0.76, SD=1.67), and claim-only (M=0.18, SD=1.70). However, we
did not observe a significant main effect of answer design on trust
(𝜒2 (3)=7.34, p=.062). The results did not support H1.4.

4.2.5 Why trust or not trust? We coded participants’ reasons for
trusting or not trusting the question-answering system. Seven cate-
gories of responses emerged from the analysis. We report the core
results here and provide the detailed breakdown of the categories
across conditions in the supplementary materials.

For each response, we labelled each category as present or absent.
We labelled all categories as absent for responses that were too
broad or vague (e.g., “it is nice” ).

The top three reasons for distrusting the system were some
answers did not make sense (40.5% of 200), the system confused
correlation and causation (9%), and it did not provide enough sup-
port for its causal claims (7.5%). A participant felt that some claims
lacked support and wrote, “Some of the answers could be factual but
it was hard to determine without further data.”

The top three reasons for trusting the system were that some
answers made sense (26%), the system showed the data (8.5%), and
the system provided some support for its causal claims (6.5%)

We did not observe a significant difference in the presence of
any of the categories across conditions using Fisher’s exact tests
(details in supplementary materials).

4.2.6 Awareness of system’s flaws. Using a Fisher’s exact test, we
did not find a significant difference in the number of people who
found reasoning flaws (these participants selected “yes” for the
question asking whether they observed reasoning flaws) across
conditions (p=.33). We could not reject H1.5.

4.2.7 What are the reasoning flaws? The qualitative coding re-
sulted in four categories. Among the 97 participants who observed
reasoning flaws in the system, the majority of participants stated
providing nonsensical answers as a reasoning flaw (70.1% of 97).
Other observed reasoning flaws were confusing correlation and
causation (15.5%), not having enough support for the claims (8.25%),
and considering only one factor (3.09%). Fisher’s exact tests did not
indicate significant differences in the presence of any of the four
categories across conditions.

4.2.8 Awareness of “correlation is not causation”. We asked partici-
pants to rate a sentence stating that a scatterplot implied causation.
On a scale from -3 (strongly disagree) to +3 (strongly agree), claim +
vis + description + warning had the lowest rating (M=1.02, SD=1.45),
followed by claim + vis + description (M=1.6, SD=1.59), claim-only
(M=1.82, SD=1.10), and claim + vis (M=1.88, SD=1.33). All conditions
got a positive average rating, indicating a tendency to associate
correlation with causation. We found a significant main effect of
answer design on the rating (𝜒2 (3)=15.2, p=.002). Post-hoc pairwise
comparisons showed that claim + vis + description + warning had
a significantly lower average rating than all the other three condi-
tions, indicating that the warning appeared to reduce the tendency
to associate correlation with causation. The results did not support
H1.6.

4.2.9 Why agree or disagree with the statement? The qualitative
coding yielded four categories. We again observed that some re-
sponses were overly broad (e.g., “because the graph shows it” ) and
coded all categories as absent for such responses.

Among the more specific responses, the majority of participants
agreed that the scatterplot implied a causal relationship because the
scatterplot showed a correlation (46% of 200). An example response
is “If Variable X did not rise then child mortality would not rise.”

Participants disagreed with the statement because correlation
is not causation (8.5%), variable X was unknown and they could
not judge (8.5%), and the scatterplot had outliers (4%). A participant
who observed outliers said, “I only slightly agree because other states
show otherwise. Texas, for instance, has a much lower Child Mortality
rate but Variable X is almost the same.”
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We did not find significant differences in the presence of any of
the categories across conditions.

5 STUDY 2: PROVIDING ONLY REASONABLE
ANSWERS

Several findings from study 1 deviated from our expectations: The
simple warning appeared to decrease the plausibility of reasonable
claims and increase the awareness of “correlation is not causation”;
we did not have enough evidence that user trust was improved by
showing the data. A potential explanation lied in the unreliable
performance of the system—it made the warning more noticeable
and reduced the effectiveness of showing the data in improving user
trust (when the system performed poorly, it was untrustworthy
no matter whether it showed the data). To investigate whether
the observations in study 1 held for a system that had a higher
perceived performance, we conducted study 2.

5.1 Methods
Study 2 was the same as the study 1 except that participants re-
viewed nine reasonable answers to why questions (as opposed to
reviewing answers with different levels of plausibility in study 1).
We constructed the answers using the top nine claims in the ranked
list of 30 reasonable claims obtained from the pre-study.

We similarly recruited 50 participants per condition (200 unique
workers in total). Workers who participated in the pre-study and
study 1were excluded from study 2. Participants aged 18-70 (M=36.1,
SD=11.0). 121 were male, 77 were female, and 2 preferred not to
say. The reported educational attainments were high school (28 par-
ticipants), professional school (10), college (116), graduate school
(37), PhD (8), and postdoctoral (1). Concerning data analysis exper-
tise, 44 had none, 79 were beginners, 54 were intermediate, and 23
were advanced. For experience with visualization platforms (e.g.,
Tableau), 84 had none, 47 were beginners, 45 were intermediate,
and 24 were advanced. When asked about the frequency of using
question-answering systems, 123 reported never, 35 reported rarely,
31 reported weekly, and 11 reported daily.

As the system only presented reasonable answers, study 2 only
had four measures: agreement (reasonable), trust, awareness of
system’s flaws, and awareness of “correlation is not causation.”

In study 1, participants heeded the warning, causing them to
agree less with reasonable claims and be less likely to associate
correlation with causation. We expected that both effects would
disappear when the system was more trustworthy. Furthermore,
in study 1, showing the data using a scatterplot did not seem to
improve user trust in the system. We posited that when the system
provided only reasonable answers, showing the data would improve
user trust. We considered the same set of hypotheses as in study 1:
H2.1: Participants’ agreement with the reasonable claims does not
differ across conditions.
H2.2: Participants in the three conditions that show a scatterplot
in the answers trust the question-answering system more than
participants in the claim-only condition.
H2.3: Participants’ awareness of the system’s flaws does not differ
across conditions.

H2.4: Participants’ awareness of “correlation is not causation” does
not differ across conditions.

5.2 Results
Figure 8 shows the quantitative results. Kruskal-Wallis tests for
agreement (reasonable), trust, and awareness of “correlation is not
causation” as well as a Fisher’s exact test for awareness of system’s
flaws indicated no significant differences across conditions (details
in the supplementary materials). Hence, the results failed to support
H2.2. However, we could not reject H2.1, H2.3, and H2.4.

We also observed that participants in study 2 appeared to trust
the system more than those in study 1. The mean trust rating in
study 2 was 1.70 (SD=1.04) while that in study 1 was 0.71 (SD=1.64).
Participants in study 2 also found fewer reasoning flaws in the
system. The total number of participants who found reasoning flaws
in study 2 was 35 (compared with 97 in study 1). We summarize
the qualitative results as follows.

5.2.1 Why trust or not trust? Participants provided diverse reasons
for trusting or not trusting the system. Seven categories of reasons
emerged from the qualitative coding.

The top three reasons for trusting the system were the answers
made sense (38.5% of 200), the system provided enough support for
its causal claims (19.5%), and it showed the data (8%). The top three
reasons for distrusting the system were the system did not provide
enough support for its claims (8%), it considered only one factor
(7%), and it confused correlation and causation (2.5%).

Fisher’s exact tests indicated that the number of participants stat-
ing “the answers made sense” as a reason was significantly different
across conditions (p=.014). We conducted six post-hoc pairwise
comparisons using Fisher’s exact tests with a Holm-Bonferroni cor-
rection. We only observed that more participants in the claim-only
condition stated “the answers made sense” than in the claim + vis
+ description condition (p=.025). A potential explanation was that
providing a claim only led participants to comment mostly on the
plausibility of the claim. However, providing other information
(e.g., a scatterplot) alongside a claim enabled them to comment on
other aspects and less on the plausibility.

In study 2, 56% of the responses contained reasons for trusting
the system while 16% contained reasons for not trusting it. The
data stood in contrast to those in study 1. In study 1, 39.5% of the
responses had reasons for trust while 49.5% had reasons for distrust.
This echoed the finding that participants trusted the system more
in study 2.

5.2.2 What are the reasoning flaws? Among the 35 participants
who answered “yes” for the question asking whether they observed
reasoning flaws in the system, we found three categories of re-
sponses after omitting those who provided vague answers: The
system considered only one factor (28.6% of 35); it confused cor-
relation and causation (20%); it did not provide enough support
for the claims (17.1%). Using Fisher’s exact tests, we did not ob-
serve significant differences in the presence of the categories across
conditions.

5.2.3 Why agree or disagree with the statement? The qualitative
analysis resulted in five categories of responses. Congruent with
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Figure 8: Quantitative results from study 2. All error bars show 95% bootstrapped confidence intervals.

study 1’s results, most participants agreed that the scatterplot im-
plied a causal relationship because the scatterplot showed a corre-
lation (43.5% of 200).

Participants who disagreed with the statement commented that
correlation is not causation (7.5%), the scatterplot had outliers (7%),
variable X was unknown and they could not judge (5.5%), and the
dots in the scatterplot looked disperse (1.5%).

Fisher’s exact tests did not show a significant difference across
conditions for any of the categories.

6 DISCUSSION
Before discussing the implications of our findings, we summarize
the results from the two studies and provide potential explanations
for the less intuitive observations.

In study 1, participants reviewed answers of different plausibility.
We did not observe effects of the textual description about corre-
lation on the perceived plausibility of causal claims, user trust in
the system, the awareness of the system’s flaws, and the awareness
of “correlation is not causation.” However, showing a scatterplot
caused participants to disagree less with unreasonable claims and
agree more with hard-to-tell claims. In contrast, a simple warning
message seemed to cause participants to agree less with reason-
able claims. The warning also reduced participants’ tendency to
associate correlation with causation.

Nevertheless, when participants examined only reasonable an-
swers in study 2, the impact of the simple warning message on
reducing the plausibility of reasonable claims and on raising the
awareness of “correlation is not causation” seemed to disappear.
Research in warning science found that arousal strength (i.e., the
perceived importance or relevance of a warning) affects the effec-
tiveness of a warning message in motivating safety-related behav-
iors [28]. Participants in study 2 tended to trust the system more
than those in study 1. This likely led participants in study 2 to
perceive the warning about the system’s reasoning flaws to be less
relevant. The warning in study 2 became less effective possibly
because participants tended to ignore the warning.

In both studies, we did not observe significant differences in user
trust and the awareness of the system’s flaws across conditions.

The qualitative results provided an explanation. In study 1, when
asked about why they did not trust the system or what were the
reasoning flaws in the system, most participants simply stated that
the answers did not make sense. In study 2, when asked about why
they trusted the system, the majority commented that the answers
made sense to them. The results appeared to indicate that system
performance in answering why questions had a dominating effect
on user trust and the awareness of reasoning flaws in the system. In
other words, when users can assess system performance, showing
other information (e.g., a scatterplot or a warning) may play a small
role in shaping user trust and the awareness of flaws.

We observed a tendency for participants to conclude causation
from correlation. In both studies, we found that the ratings for the
awareness of “correlation is not causation” were positive (i.e., agree-
ing that the scatterplot implied causation) even when participants
were warned that correlation is not causation. How do we reduce
the illusion of causality when using question-answering systems?
Here, we devise design considerations based on the study results.

6.1 Encouraging SkepticismWhen Using
Question-Answering Systems

A core implication of our results is that question-answering systems
could utilize visualizations of correlation to create an illusion of
causality: By showing a scatterplot, these systems could increase
the likelihood for users to accept causal claims that are unfounded.
Mitigating the illusion of causality entails a deliberate design effort.
In this section, we argue that encouraging users to be skeptical
about automated answers could promote an appropriate interpreta-
tion of automatically generated causal claims and propose design
ideas to inspire skepticism.

Why should users be skeptical when considering causal claims
that are automatically generated? In a perfect world, user trust in
a system’s answer should match the ground truth—users should
trust causal claims only when they are true and distrust false claims
(Fig. 9a). In reality, however, belief in causal claims depends on
their perceived plausibility despite the ground truth (Fig. 9b). Very
often, users can only determine the plausibility of a causal claim
but not whether it is true. Hence, we advocate that users should
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Figure 9: The relationship among trust, a claim’s plausibility
and the ground truth in different scenarios. In each bigger
square, the y-axis is a claim’s plausibility and the x-axis is
the ground truth. In a perfect world (a), users should trust
a claim only if it is true. In reality (b), users tend to trust a
reasonable claim and distrust an unreasonable claim.When
the truth is unknown, a good data consumer (c) should be
skeptical despite a claims’ plausibility.

be skeptical whenever they cannot assess the veracity of a causal
claim (Fig. 9c): A good data consumer should question the validity
of a reasonable claim because the causal relationship could be fake;
she should not refute the possibility of an unreasonable claim since
the claim could hold true.

6.1.1 Encouraging Skepticism for Reasonable Claims. How do we
encourage users to be skeptical about reasonable causal claims
through interface design? Warning could be a potential solution.
In study 1, we observed that participants tended to be more cau-
tious in agreeing with a reasonable claim given a simple warning
message. However, a simple warning could be unreliable: When
the system only provided reasonable causal claims in study 2, the
warning did not seem to promote such caution. To improve the
effectiveness of warning in inspiring skepticism, its design could
be improved based on research in warning science. For example,
Wogalter [67] proposed the Communication-Human Information
Processing (C-HIP) Model to describe the perceptual and cognitive
processes after people see a warning. The model suggests asking a
series of questions to assess the effectiveness of warning messages.
For instance, do people notice the warning? Is the message in the
warning being effectively communicated?

What are other interface design ideas to help encourage skepti-
cism? In study 1, we found that participants tended to disagree less
with unreasonable claims and agree more with hard-to-tell claims
given a scatterplot. This indicates that correlation depicted in a
scatterplot could induce an illusion of causality. To mitigate this
illusion, it seems plausible to hide scatterplots from causal claims.
Nevertheless, some participants felt that they trusted the system
more because the scatterplots enabled them to see the data. Ideally,
designers should keep the benefits of scatterplots while mitigat-
ing their side effects. Ritchie et al. [54] found that transitioning
from a non-deceptive view to a deceptive one could reduce the
deception caused by the second view while enabling users to access
the benefits of first view. Following this idea, a system could hide

scatterplots by default while providing an option for users to view
them. It would be interesting to investigate whether this design
could reduce users’ tendency to confuse correlation and causation.

How do we improve the general awareness of “correlation is
not causation”? Besides inspiring skepticism about a reasonable
claim, warnings also appeared to raise awareness of “correlation is
not causation” in study 1. Again, a simple warning alone could be
ineffective: Even when participants were warned that correlation
is not causation, they tended to agree that the scatterplot implied
causation. This suggests that system developers might need to look
beyond interface design to help users acquire correct statistical
knowledge. Alternatives include pedagogical approaches such as
tutorials. For example, when Tableau introduced Explain Data, they
emphasized that users were the data experts, and they should judge
the veracity of the causal claims based on their knowledge [62, 63].
Futureworkwill study the effectiveness of such tutorials in reducing
users’ tendency to associate correlation with causation.

6.1.2 Encouraging Open-Mindedness for Unreasonable Claims. While
this work sheds light on ways to inspire skepticism for reasonable
claims, designs to keep users open-minded when they see unreason-
able claims are yet to be explored. Open-mindedness is a different
form of skepticism: Instead of being skeptical about the automati-
cally generated causal claims, users are skeptical about their beliefs
and expectations about the data. Different models (e.g., Bayesian sta-
tistics [5] and the data-frame model [33, 34]) have been developed
to explain the process through which people update their beliefs.
Prior research in misinformation showed that existing beliefs are
rigid, and people are inclined to resist changes to their beliefs [42].

Although encouraging open-mindedness could be challenging,
what are some potential ideas to keep people open-minded when
they see unreasonable causal claims? An idea is to enable users to
tell the system if an answer makes sense. If users consider an answer
questionable, the system could explain why a causal relationship
might exist to prevent users from prematurely rejecting a causal
claim that seems unreasonable. However, further evidence would
be required to demonstrate the effectiveness of this approach.

6.2 Study Limitations and Future Work
Our results hint at the potential for scatterplots to create an illu-
sion of causality and the potential for a simple warning to reduce
this illusion. We note that these are observations under controlled
experiments, and we are prudent in drawing conclusions about
the practical significance of the findings. First, to collect data from
hundreds of people on MTurk, we needed to sacrifice realism to
adapt the study for an online setting. For example, participants
examined a series of answers provided by the system rather than
really interact with a working system. Second, collaboration could
protect users from being misled in practice: While an analyst might
draw causal conclusions from correlational evidence, colleagues
might remind the analyst of the flaw. Learning about the practi-
cal implications of our findings will require observing how people
employ systems such as Explain Data [64] in their workflow and
studying how people collaborate during data analysis.

We also note that the effectiveness of a simple warning in re-
ducing causal illusion warrants further studies. Our work only
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compared four experimental conditions (Fig. 4). Evidence from fur-
ther comparisons (e.g., a comparison between an additional claim
+ vis + warning condition and the original claim + vis condition)
could support our findings about the effectiveness of the warning.
An ideal experiment is to consider each information type (claim, vis,
textual description, and warning) an independent variable with two
levels (with and without). This experiment will enable comparisons
among all possible experimental conditions. Nevertheless, adding
more conditions greatly reduces power given Bonferroni correction,
and interesting findings might be missed. In future studies, exper-
imenters would likely want to preserve power by honing in on a
smaller set of comparisons. Our findings could provide guidance
on what focused comparisons to make.

Our target populationwas potential end users of question-answering
systems. These users include both people who are less proficient
in data analysis and those who are more proficient. Our partici-
pants ranged from beginner users to more advanced analysts and
appeared to be a reasonable proxy for our target. Yet, the focus
on these users also implies that some findings (e.g., the tendency
among participants to confuse correlation and causation) may not
generalize if we conduct the studies with professional analysts only.
Future work will replicate our study with these experts.

In both studies, we used a single question to measure trust in
the question-answering system. In future, a questionnaire with
multiple questions could be developed for assessing user trust in
these systems. Such a questionnaire will measure sub-dimensions
of trust (e.g., understanding) and enable researchers to learn about
more fine-grained reasons for trusting a system (e.g., the system is
trustworthy because users can easily understand the answers).

We have investigated whether showing correlational evidence
could induce causal illusion. One form of correlational evidence
we studied was textual description about correlation. We note that
creating a description that completely eliminates casual perception
could be challenging because people might easily mistake correla-
tion for causation. Future research will investigate how different
phrasing of correlation descriptions will affect casual perception.

Our study focused on numerical variables. Visualizing correla-
tion between numerical variables using scatterplots is common.
For other data types (e.g., categorical variables), other charts are
often used. A natural extension to our work is to investigate the
generalizability of our findings to other data types and charts.

Finally, although we are advocates for encouraging skepticism
when using question-answering systems, we note that inspiring
the right level of skepticism could be challenging. Ideally, users’
skepticism about a causal claim should match the evidence they
have about the claim: For causal claims with good support (e.g.,
carbon dioxide emission leads to global warming), users could
be less skeptical; for claims that lack supportive evidence, users
could evaluate them more critically. However, it is difficult for a
system to infer the amount of evidence users have about a claim and
encourage skepticism accordingly. Moving forward, researchers
could investigate whether telling users to be skeptical (e.g., through
warnings) promotes an appropriate level of skepticism or engenders
excessive and unhealthy skepticism.

7 CONCLUSION
Our work is situated in the discourse about the the ethical implica-
tions of data visualization [12]. We highlighted another scenario
where visualizations might mislead users—question-answering sys-
tems could visualize correlation to create an illusion of causality.
In particular, we found that in a system that occasionally provided
unreasonable answers, showing a scatterplot next to a causal claim
increased the plausibility of unreasonable and hard-to-tell claims.
However, providing a simple warning about “correlation is not
causation” seemed to lead participants to accept reasonable claims
more cautiously. We further observed that our participants had
a tendency to associate correlation with causation, but the warn-
ing appeared to reduce the tendency. We did not observe these
effects of warning in a system that only provided reasonable an-
swers. Based on the findings, we advocate that system developers
could encourage users to be skeptical about answers generated by
question-answering systems and have proposed ideas for doing so.

ACKNOWLEDGMENTS
We thank Jian Zhao for early comments on the studies and the GT
Visualization Lab for feedback on the paper. Special thanks to the
anonymous reviewers for the thoughtful reviews.

REFERENCES
[1] Outlier AI. 2017. How to Conduct a Proper Root Cause Analysis.

https://towardsdatascience.com/how-to-conduct-a-proper-root-cause-
analysis-789b9847f84b

[2] Robert Amar, James Eagan, and John Stasko. 2005. Low-Level Components of
Analytic Activity in Information Visualization. In IEEE Symposium on Information
Visualization. IEEE, 111–117. https://doi.org/10.1109/INFVIS.2005.1532136

[3] Apple. 2020. Siri - Apple. https://www.apple.com/siri/
[4] Zahra Ashktorab, Mohit Jain, Q Vera Liao, and Justin D Weisz. 2019. Resilient

Chatbots: Repair Strategy Preferences for Conversational Breakdowns. In Pro-
ceedings of the 2019 CHI Conference on Human Factors in Computing Systems.
ACM, 1–12. https://doi.org/10.1145/3290605.3300484

[5] William M Bolstad and James M Curran. 2016. Introduction to Bayesian Statistics.
John Wiley & Sons.

[6] Michelle A Borkin, Zoya Bylinskii, Nam Wook Kim, Constance May Bain-
bridge, Chelsea S Yeh, Daniel Borkin, Hanspeter Pfister, and Aude Oliva. 2015.
Beyond Memorability: Visualization Recognition and Recall. IEEE Transac-
tions on Visualization and Computer Graphics 22, 1 (2015), 519–528. https:
//doi.org/10.1109/TVCG.2015.2467732

[7] Jeremy Boy, Anshul Vikram Pandey, John Emerson, Margaret Satterthwaite,
Oded Nov, and Enrico Bertini. 2017. Showing People Behind Data: Does Anthro-
pomorphizing Visualizations Elicit More Empathy for Human Rights Data?. In
Proceedings of the 2017 CHI Conference on Human Factors in Computing Systems.
ACM, 5462–5474. https://doi.org/10.1145/3025453.3025512

[8] United States Census Bureau. 2020. Census Bureau. https://www.census.gov
[9] Hao-Fei Cheng, Ruotong Wang, Zheng Zhang, Fiona O’Connell, Terrance Gray,

F Maxwell Harper, and Haiyi Zhu. 2019. Explaining Decision-Making Algorithms
Through UI: Strategies to Help Non-Expert Stakeholders. In Proceedings of the
2019 CHI Conference on Human Factors in Computing Systems. ACM, 1–12. https:
//doi.org/10.1145/3290605.3300789

[10] William S Cleveland, Persi Diaconis, and Robert McGill. 1982. Variables on
Scatterplots LookMore Highly CorrelatedWhen the Scales Are Increased. Science
216, 4550 (1982), 1138–1141. https://doi.org/10.1126/science.216.4550.1138

[11] Wharton County Junior College. 2020. Root Cause Analysis Training. https:
//www.wcjc.edu/Programs/continuing-education/root-cause.aspx

[12] Michael Correll. 2019. Ethical Dimensions of Visualization Research. In Proceed-
ings of the 2019 CHI Conference on Human Factors in Computing Systems. ACM,
1–13. https://doi.org/10.1145/3290605.3300418

[13] Michael Correll, Enrico Bertini, and Steven Franconeri. 2020. Truncating the
Y-Axis: Threat or Menace?. In Proceedings of the 2020 CHI Conference on Human
Factors in Computing Systems. ACM, 1–12. https://doi.org/10.1145/3313831.
3376222

[14] Michael Correll and Jeffrey Heer. 2017. Black Hat Visualization. In Workshop
on Dealing with Cognitive Biases in Visualisations (DECISIVe). https://decisive-
workshop.dbvis.de/wp-content/uploads/2017/09/0115-paper.pdf

https://towardsdatascience.com/how-to-conduct-a-proper-root-cause-analysis-789b9847f84b
https://towardsdatascience.com/how-to-conduct-a-proper-root-cause-analysis-789b9847f84b
https://doi.org/10.1109/INFVIS.2005.1532136
https://www.apple.com/siri/
https://doi.org/10.1145/3290605.3300484
https://doi.org/10.1109/TVCG.2015.2467732
https://doi.org/10.1109/TVCG.2015.2467732
https://doi.org/10.1145/3025453.3025512
https://www.census.gov
https://doi.org/10.1145/3290605.3300789
https://doi.org/10.1145/3290605.3300789
https://doi.org/10.1126/science.216.4550.1138
https://www.wcjc.edu/Programs/continuing-education/root-cause.aspx
https://www.wcjc.edu/Programs/continuing-education/root-cause.aspx
https://doi.org/10.1145/3290605.3300418
https://doi.org/10.1145/3313831.3376222
https://doi.org/10.1145/3313831.3376222
https://decisive-workshop.dbvis.de/wp-content/uploads/2017/09/0115-paper.pdf
https://decisive-workshop.dbvis.de/wp-content/uploads/2017/09/0115-paper.pdf


CHI ’21, May 8–13, 2021, Yokohama, Japan Law, Lo, Endert, Stasko, andQu

[15] Coursera. 2020. Root Cause Analysis - Root Cause Analysis | Coursera. https:
//www.coursera.org/lecture/six-sigma-analyze/root-cause-analysis-w01Qj

[16] Kedar Dhamdhere, Kevin S McCurley, Ralfi Nahmias, Mukund Sundararajan, and
Qiqi Yan. 2017. Analyza: Exploring Data With Conversation. In Proceedings of
the 22nd International Conference on Intelligent User Interfaces. ACM, 493–504.
https://doi.org/10.1145/3025171.3025227

[17] Evanthia Dimara, Gilles Bailly, Anastasia Bezerianos, and Steven Franconeri.
2018. Mitigating the Attraction Effect With Visualizations. IEEE Transactions on
Visualization and Computer Graphics 25, 1 (2018), 850–860. https://doi.org/10.
1109/TVCG.2018.2865233

[18] Evanthia Dimara, Steven Franconeri, Catherine Plaisant, Anastasia Bezerianos,
and Pierre Dragicevic. 2020. A task-based taxonomy of cognitive biases for
information visualization. IEEE Transactions on Visualization and Computer
Graphics 26, 2 (2020), 1413–1432. https://doi.org/10.1109/TVCG.2018.2872577

[19] Serge Egelman, Lorrie Faith Cranor, and Jason Hong. 2008. You’ve Been Warned:
An Empirical Study of the Effectiveness of Web Browser Phishing Warnings. In
Proceedings of the 2008 CHI Conference on Human Factors in Computing Systems.
ACM, 1065–1074. https://doi.org/10.1145/1357054.1357219

[20] Ethan Fast, Binbin Chen, Julia Mendelsohn, Jonathan Bassen, and Michael S
Bernstein. 2018. Iris: A Conversational Agent for Complex Tasks. In Proceedings
of the 2018 CHI Conference on Human Factors in Computing Systems. ACM, 1–13.
https://doi.org/10.1145/3173574.3174047

[21] Asbjørn Følstad and Petter Bae Brandtzæg. 2017. Chatbots and the New World
of HCI. Interactions 24, 4 (2017), 38–42. https://doi.org/10.1145/3085558

[22] National Center for Education Statistics. 2020. National Center for Education
Statistics (NCES) Home Page, a part of the U.S. Department of Education. https:
//nces.ed.gov

[23] Kaiser Family Foundation. 2020. KFF - Health Policy Analysis, Polling and
Journalism. https://www.kff.org

[24] Tong Gao, Mira Dontcheva, Eytan Adar, Zhicheng Liu, and Karrie G Karahalios.
2015. Datatone: Managing Ambiguity in Natural Language Interfaces for Data
Visualization. In Proceedings of the 28th Annual ACM Symposium on User Interface
Software & Technology. ACM, 489–500. https://doi.org/10.1145/2807442.2807478

[25] Marti Hearst and Melanie Tory. 2019. Would You Like a Chart With That? Incor-
porating Visualizations Into Conversational Interfaces. In 2019 IEEE Visualization
Conference (VIS). IEEE, 1–5. https://doi.org/10.1109/VISUAL.2019.89337668

[26] Marti Hearst, Melanie Tory, and Vidya Setlur. 2019. Toward Interface Defaults
for Vague Modifiers in Natural Language Interfaces for Visual Analysis. In 2019
IEEE Visualization Conference (VIS). IEEE, 21–25. https://doi.org/10.1109/VISUAL.
2019.8933569

[27] Jeffrey Heer and Maneesh Agrawala. 2006. Multi-Scale Banking to 45 Degrees.
IEEE Transactions on Visualization and Computer Graphics 12, 5 (2006), 701–708.
https://doi.org/10.1109/TVCG.2006.163

[28] Elizabeth Hellier, Daniel B Wright, Judy Edworthy, and Stephen Newstead. 2000.
On the Stability of the Arousal Strength of Warning Signal Words. Applied
Cognitive Psychology: The Official Journal of the Society for Applied Research
in Memory and Cognition 14, 6 (2000), 577–592. https://doi.org/10.1002/1099-
0720(200011/12)14:6<577::AID-ACP682>3.0.CO;2-A

[29] Jonathan L Herlocker, Joseph A Konstan, and John Riedl. 2000. Explain-
ing Collaborative Filtering Recommendations. In Proceedings of the 2000 ACM
Conference on Computer Supported Cooperative Work. ACM, 241–250. https:
//doi.org/10.1145/358916.358995

[30] Enamul Hoque, Vidya Setlur, Melanie Tory, and Isaac Dykeman. 2017. Applying
Pragmatics Principles for Interaction With Visual Analytics. IEEE Transactions
on Visualization and Computer Graphics 24, 1 (2017), 309–318. https://doi.org/10.
1109/TVCG.2017.2744684

[31] Jessica Hullman and Nick Diakopoulos. 2011. Visualization Rhetoric: Framing Ef-
fects in Narrative Visualization. IEEE Transactions on Visualization and Computer
Graphics 17, 12 (2011), 2231–2240. https://doi.org/10.1109/TVCG.2011.255

[32] Yea-Seul Kim, Katharina Reinecke, and Jessica Hullman. 2017. Data Through
Others’ Eyes: The Impact of Visualizing Others’ Expectations on Visualization
Interpretation. IEEE Transactions on Visualization and Computer Graphics 24, 1
(2017), 760–769. https://doi.org/10.1109/TVCG.2017.2745240

[33] Gary Klein, Brian Moon, and Robert R Hoffman. 2006. Making Sense of Sense-
making 1: Alternative Perspectives. IEEE Intelligent Systems 21, 4 (2006), 70–73.
https://doi.org/10.1109/MIS.2006.75

[34] Gary Klein, Brian Moon, and Robert R Hoffman. 2006. Making Sense of Sense-
making 2: A Macrocognitive Model. IEEE Intelligent Systems 21, 5 (2006), 88–92.
https://doi.org/10.1109/MIS.2006.100

[35] Ha-Kyung Kong, Zhicheng Liu, and Karrie Karahalios. 2018. Frames and Slants
in Titles of Visualizations on Controversial Topics. In Proceedings of the 2018
CHI Conference on Human Factors in Computing Systems. ACM, 1–12. https:
//doi.org/10.1145/3173574.3174012

[36] Ha-Kyung Kong, Zhicheng Liu, and Karrie Karahalios. 2019. Trust and Recall
of Information Across Varying Degrees of Title-Visualization Misalignment. In
Proceedings of the 2019 CHI Conference on Human Factors in Computing Systems.
ACM, 1–13. https://doi.org/10.1145/3290605.3300576

[37] Po-Ming Law, Rahul C Basole, and Yanhong Wu. 2018. Duet: Helping Data
Analysis Novices Conduct Pairwise Comparisons by Minimal Specification. IEEE
Transactions on Visualization and Computer Graphics 25, 1 (2018), 427–437. https:
//doi.org/10.1109/TVCG.2018.2864526

[38] Po-Ming Law, Subhajit Das, and Rahul C Basole. 2019. Comparing Apples and
Oranges: Taxonomy and Design of Pairwise Comparisons within Tabular Data.
In Proceedings of the 2019 CHI Conference on Human Factors in Computing Systems.
ACM, 1–12. https://doi.org/10.1145/3290605.3300409

[39] Po-Ming Law, Alex Endert, and John Stasko. 2020. CharacterizingAutomatedData
Insights. arXiv preprint arXiv:2008.13060 (2020). https://arxiv.org/abs/2008.13060

[40] Victoria Lee. 2020. Why We Quarantine: A Data Driven Love Letter to You and
the Loves of Your Life. https://medium.com/swlh/why-we-quarantine-a-data-
driven-love-letter-to-you-and-the-loves-of-your-life-c19de2bca87f

[41] Erich L Lehmann. 2006. Nonparametrics: Statistical Methods Based on Ranks.
Springer-Verlag, New York, NY, USA.

[42] Stephan Lewandowsky, Ullrich KH Ecker, Colleen M Seifert, Norbert Schwarz,
and John Cook. 2012. Misinformation and Its Correction: Continued Influence
and Successful Debiasing. Psychological Science in the Public Interest 13, 3 (2012),
106–131. https://doi.org/10.1177/1529100612451018

[43] Q Vera Liao, Matthew Davis, Werner Geyer, Michael Muller, and N Sadat
Shami. 2016. What Can You Do? Studying Social-Agent Orientation and
Agent Proactive Interactions With an Agent for Employees. In Proceedings
of the 2016 ACM Conference on Designing Interactive Systems. ACM, 264–275.
https://doi.org/10.1145/2901790.2901842

[44] Q Vera Liao, Muhammed Mas-ud Hussain, Praveen Chandar, Matthew Davis,
Yasaman Khazaeni, Marco Patricio Crasso, Dakuo Wang, Michael Muller, N Sadat
Shami, and Werner Geyer. 2018. All Work and No Play? Conversations With
a Question-And-Answer Chatbot in the Wild. In Proceedings of the 2018 CHI
Conference on Human Factors in Computing Systems. ACM, 1–13. https://doi.org/
10.1145/3173574.3173577

[45] Zhicheng Liu and Jeffrey Heer. 2014. The Effects of Interactive Latency on
Exploratory Visual Analysis. IEEE Transactions on Visualization and Computer
Graphics 20, 12 (2014), 2122–2131. https://doi.org/10.1109/TVCG.2014.2346452

[46] m00nlight Wang. 2018. Income Inequality Analysis and Visualiza-
tion. https://medium.com/@m00nlight/income-inequality-analysis-and-
visualization-f688a4fc6609

[47] HelenaMatute, Fernando Blanco, Ion Yarritu, Marcos Díaz-Lago,Miguel AVadillo,
and Itxaso Barberia. 2015. Illusions of Causality: How They Bias Our Everyday
Thinking and How They Could Be Reduced. Frontiers in Psychology 6 (2015), 888.
https://doi.org/10.3389/fpsyg.2015.00888

[48] Luana Micallef, Gregorio Palmas, Antti Oulasvirta, and Tino Weinkauf. 2017.
Towards Perceptual Optimization of the Visual Design of Scatterplots. IEEE
Transactions on Visualization and Computer Graphics 23, 6 (2017), 1588–1599.
https://doi.org/10.1109/TVCG.2017.2674978

[49] Andrew Vande Moere, Martin Tomitsch, Christoph Wimmer, Boesch Christoph,
and Thomas Grechenig. 2012. Evaluating the Effect of Style in Information
Visualization. IEEE Transactions on Visualization and Computer Graphics 18, 12
(2012), 2739–2748. https://doi.org/10.1109/TVCG.2012.221

[50] Makeover Monday. 2020. Makeover Monday | a Weekly Social Data Project.
https://www.makeovermonday.co.uk

[51] Anshul Vikram Pandey, Anjali Manivannan, Oded Nov, Margaret Satterthwaite,
and Enrico Bertini. 2014. The Persuasive Power of Data Visualization. IEEE
Transactions on Visualization and Computer Graphics 20, 12 (2014), 2211–2220.
https://doi.org/10.1109/TVCG.2014.2346419

[52] Anshul Vikram Pandey, Katharina Rall, Margaret L Satterthwaite, Oded Nov,
and Enrico Bertini. 2015. How Deceptive Are Deceptive Visualizations? an
Empirical Analysis of Common Distortion Techniques. In Proceedings of the
2015 CHI Conference on Human Factors in Computing Systems. ACM, 1469–1478.
https://doi.org/10.1145/2702123.2702608

[53] Pearl Pu, Li Chen, and Rong Hu. 2011. A User-Centric Evaluation Framework
for Recommender System. In Proceedings of the Fifth ACM Conference on Recom-
mender Systems. ACM, 157–164. https://doi.org/10.1145/2043932.2043962

[54] Jacob Ritchie, Daniel Wigdor, and Fann Chevalier. 2019. A Lie Reveals the
Truth: Quasimodes for Task-Aligned Data Presentation. In Proceedings of the
2019 CHI Conference on Human Factors in Computing Systems. ACM, 1–13. https:
//doi.org/10.1145/3290605.3300423

[55] Julia M Rohrer. 2018. Thinking Clearly About Correlations and Causation: Graph-
ical Causal Models for Observational Data. Advances in Methods and Practices in
Psychological Science 1, 1 (2018), 27–42. https://doi.org/10.1177/2515245917745629

[56] Dominik Sacha, Andreas Stoffel, Florian Stoffel, Bum Chul Kwon, Geoffrey Ellis,
and Daniel A Keim. 2014. Knowledge GenerationModel for Visual Analytics. IEEE
Transactions on Visualization and Computer Graphics 20, 12 (2014), 1604–1613.
https://doi.org/10.1109/TVCG.2014.2346481

[57] Alper Sarikaya and Michael Gleicher. 2017. Scatterplots: Tasks, Data, and Designs.
IEEE Transactions on Visualization and Computer Graphics 24, 1 (2017), 402–412.
https://doi.org/10.1109/TVCG.2017.2744184

https://www.coursera.org/lecture/six-sigma-analyze/root-cause-analysis-w01Qj
https://www.coursera.org/lecture/six-sigma-analyze/root-cause-analysis-w01Qj
https://doi.org/10.1145/3025171.3025227
https://doi.org/10.1109/TVCG.2018.2865233
https://doi.org/10.1109/TVCG.2018.2865233
https://doi.org/10.1109/TVCG.2018.2872577
https://doi.org/10.1145/1357054.1357219
https://doi.org/10.1145/3173574.3174047
https://doi.org/10.1145/3085558
https://nces.ed.gov
https://nces.ed.gov
https://www.kff.org
https://doi.org/10.1145/2807442.2807478
https://doi.org/10.1109/VISUAL.2019.89337668
https://doi.org/10.1109/VISUAL.2019.8933569
https://doi.org/10.1109/VISUAL.2019.8933569
https://doi.org/10.1109/TVCG.2006.163
https://doi.org/10.1002/1099-0720(200011/12)14:6<577::AID-ACP682>3.0.CO;2-A
https://doi.org/10.1002/1099-0720(200011/12)14:6<577::AID-ACP682>3.0.CO;2-A
https://doi.org/10.1145/358916.358995
https://doi.org/10.1145/358916.358995
https://doi.org/10.1109/TVCG.2017.2744684
https://doi.org/10.1109/TVCG.2017.2744684
https://doi.org/10.1109/TVCG.2011.255
https://doi.org/10.1109/TVCG.2017.2745240
https://doi.org/10.1109/MIS.2006.75
https://doi.org/10.1109/MIS.2006.100
https://doi.org/10.1145/3173574.3174012
https://doi.org/10.1145/3173574.3174012
https://doi.org/10.1145/3290605.3300576
https://doi.org/10.1109/TVCG.2018.2864526
https://doi.org/10.1109/TVCG.2018.2864526
https://doi.org/10.1145/3290605.3300409
https://arxiv.org/abs/2008.13060
https://medium.com/swlh/why-we-quarantine-a-data-driven-love-letter-to-you-and-the-loves-of-your-life-c19de2bca87f
https://medium.com/swlh/why-we-quarantine-a-data-driven-love-letter-to-you-and-the-loves-of-your-life-c19de2bca87f
https://doi.org/10.1177/1529100612451018
https://doi.org/10.1145/2901790.2901842
https://doi.org/10.1145/3173574.3173577
https://doi.org/10.1145/3173574.3173577
https://doi.org/10.1109/TVCG.2014.2346452
https://medium.com/@m00nlight/income-inequality-analysis-and-visualization-f688a4fc6609
https://medium.com/@m00nlight/income-inequality-analysis-and-visualization-f688a4fc6609
https://doi.org/10.3389/fpsyg.2015.00888
https://doi.org/10.1109/TVCG.2017.2674978
https://doi.org/10.1109/TVCG.2012.221
https://www.makeovermonday.co.uk
https://doi.org/10.1109/TVCG.2014.2346419
https://doi.org/10.1145/2702123.2702608
https://doi.org/10.1145/2043932.2043962
https://doi.org/10.1145/3290605.3300423
https://doi.org/10.1145/3290605.3300423
https://doi.org/10.1177/2515245917745629
https://doi.org/10.1109/TVCG.2014.2346481
https://doi.org/10.1109/TVCG.2017.2744184


Causal Perception inQuestion-Answering Systems CHI ’21, May 8–13, 2021, Yokohama, Japan

[58] Vidya Setlur, Sarah E Battersby, Melanie Tory, Rich Gossweiler, and Angel X
Chang. 2016. Eviza: A Natural Language Interface for Visual Analysis. In Proceed-
ings of the 29th Annual ACM Symposium on User Interface Software & Technology.
ACM, 365–377. https://doi.org/10.1145/2984511.2984588

[59] Rashmi Sinha and Kirsten Swearingen. 2002. The Role of Transparency in
Recommender Systems. In Extended Abstracts of the 2002 CHI Conference on
Human Factors in Computing Systems. ACM, 830–831. https://doi.org/10.1145/
506443.506619

[60] Arjun Srinivasan, Steven M Drucker, Alex Endert, and John Stasko. 2018. Aug-
menting Visualizations With Interactive Data Facts to Facilitate Interpretation
and Communication. IEEE Transactions on Visualization and Computer Graphics
25, 1 (2018), 672–681. https://doi.org/10.1109/TVCG.2018.2865145

[61] Arjun Srinivasan and John Stasko. 2017. Orko: Facilitating Multimodal In-
teraction for Visual Exploration and Analysis of Networks. IEEE Transac-
tions on Visualization and Computer Graphics 24, 1 (2017), 511–521. https:
//doi.org/10.1109/TVCG.2017.2745219

[62] Tableau. 2019. Explain Data Internals: Automated Bayesian Modeling | Tableau
Conference 2019. https://tc19.tableau.com/learn/sessions/explain-data-internals-
automated-bayesian-modeling?_ga=2.242994050.1845292459.1583776901-
580893601.1583776901&_fsi=H59ZIxRV

[63] Tableau. 2019. Inspect a View using Explain Data – Tableau. https://help.tableau.
com/current/pro/desktop/en-us/explain_data.htm

[64] Tableau. 2020. Explain Data | Tableau Software. https://www.tableau.com/
products/new-features/explain-data

[65] Andre Calero Valdez, Martina Ziefle, andMichael Sedlmair. 2017. Priming and An-
choring Effects in Visualization. IEEE Transactions on Visualization and Computer
Graphics 24, 1 (2017), 584–594. https://doi.org/10.1109/TVCG.2017.2744138

[66] Jun Wang and Klaus Mueller. 2015. The Visual Causality Analyst: An Interactive
Interface for Causal Reasoning. IEEE Transactions on Visualization and Computer
Graphics 22, 1 (2015), 230–239. https://doi.org/10.1109/TVCG.2015.2467931

[67] Michael S Wogalter. 2006. Communication-Human Information Processing (C-
HIP) Model. Handbook of warnings (2006), 51–61.

[68] Cindy Xiong, Joel Shapiro, Jessica Hullman, and Steven Franconeri. 2019. Illusion
of Causality in Visualized Data. IEEE Transactions on Visualization and Computer
Graphics 26, 1 (2019), 853–862. https://doi.org/10.1109/TVCG.2019.2934399

[69] Cindy Xiong, Lisanne van Weelden, and Steven Franconeri. 2019. The Curse of
Knowledge in Visual Data Communication. IEEE Transactions on Visualization
and Computer Graphics (2019). https://doi.org/10.1109/TVCG.2019.2917689

[70] Bowen Yu and Cláudio T Silva. 2019. Flowsense: A Natural Language Interface
for Visual Data Exploration Within a Dataflow System. IEEE Transactions on
Visualization and Computer Graphics 26, 1 (2019), 1–11. https://doi.org/10.1109/
TVCG.2019.2934668

[71] Mingqian Zhao, Huamin Qu, and Michael Sedlmair. 2019. Neighborhood Percep-
tion in Bar Charts. In Proceedings of the 2019 CHI Conference on Human Factors in
Computing Systems. ACM, 1–12. https://doi.org/10.1145/3290605.3300462

[72] Qiyu Zhi and Ronald Metoyer. 2020. GameBot: A Visualization-Augmented
Chatbot for Sports Game. In Extended Abstracts of the 2020 CHI Conference on
Human Factors in Computing Systems. ACM, 1–7. https://doi.org/10.1145/3334480.
3382794

https://doi.org/10.1145/2984511.2984588
https://doi.org/10.1145/506443.506619
https://doi.org/10.1145/506443.506619
https://doi.org/10.1109/TVCG.2018.2865145
https://doi.org/10.1109/TVCG.2017.2745219
https://doi.org/10.1109/TVCG.2017.2745219
https://tc19.tableau.com/learn/sessions/explain-data-internals-automated-bayesian-modeling?_ga=2.242994050.1845292459.1583776901-580893601.1583776901&_fsi=H59ZIxRV
https://tc19.tableau.com/learn/sessions/explain-data-internals-automated-bayesian-modeling?_ga=2.242994050.1845292459.1583776901-580893601.1583776901&_fsi=H59ZIxRV
https://tc19.tableau.com/learn/sessions/explain-data-internals-automated-bayesian-modeling?_ga=2.242994050.1845292459.1583776901-580893601.1583776901&_fsi=H59ZIxRV
https://help.tableau.com/current/pro/desktop/en-us/explain_data.htm
https://help.tableau.com/current/pro/desktop/en-us/explain_data.htm
https://www.tableau.com/products/new-features/explain-data
https://www.tableau.com/products/new-features/explain-data
https://doi.org/10.1109/TVCG.2017.2744138
https://doi.org/10.1109/TVCG.2015.2467931
https://doi.org/10.1109/TVCG.2019.2934399
https://doi.org/10.1109/TVCG.2019.2917689
https://doi.org/10.1109/TVCG.2019.2934668
https://doi.org/10.1109/TVCG.2019.2934668
https://doi.org/10.1145/3290605.3300462
https://doi.org/10.1145/3334480.3382794
https://doi.org/10.1145/3334480.3382794

	Abstract
	1 Introduction
	2 Related Work
	2.1 Impact of Visualization Design on Data Interpretation
	2.2 Question-Answering Systems and User Perception

	3 Pre-Study: Collecting Causal Statements
	3.1 Methods
	3.2 Results

	4 Study 1: Providing Answers with Different Plausibility
	4.1 Methods
	4.2 Results

	5 Study 2: Providing Only Reasonable Answers
	5.1 Methods
	5.2 Results

	6 Discussion
	6.1 Encouraging Skepticism When Using Question-Answering Systems
	6.2 Study Limitations and Future Work

	7 Conclusion
	Acknowledgments
	References

